PGR21.com
- PGR21 관련된 질문 및 건의는 [건의 게시판]을 이용바랍니다.
- (2013년 3월 이전) 오래된 질문글은 [이전 질문 게시판]에 있습니다.
통합 규정을 준수해 주십시오. (2015.12.25.)
Date 2020/05/24 17:02:50
Name cheaterzz
Subject [질문] [논리학] 전공자분들 논리학 관련 질문입니다.
취미로 논리관련책을 끄적 거리고있습니다.

책을 보다보니 동치라는 개념이 나오더군요

동치라는 개념은 여태껏 제가 알기로 두개의 명제가 같은것으로 알고 있었는데요.

명제 P . Q의 동치를 `P이면 Q이다`와 `Q이면 P이다`가 참일때 P와 Q는 동치다라고 설명 하는데요.

그렇다면 P : 1+1=2  Q : 각각의 실수의 제곱은 양수다 라고 했을때 P,Q 모두 참이므로

P->Q Q->P 모두 참이되므로 저 2개의 문장은 동치라고 봐야할까요???

동치라고 봐야한다면 P와 Q는 같은 의미는 아닌데 이것은 어떻게 해석해야할까요??

통합규정 1.3 이용안내 인용

"Pgr은 '명문화된 삭제규정'이 반드시 필요하지 않은 분을 환영합니다.
법 없이도 사는 사람, 남에게 상처를 주지 않으면서 같이 이야기 나눌 수 있는 분이면 좋겠습니다."
Euthanasia
20/05/24 17:19
수정 아이콘
명제P는 다른 말로 하면 모든 P는 Q이다라는 뜻이고, 명제Q는 모든 Q가 P라는 뜻이 됩니다. 따라서 P, Q가 동시에 참일 때 두 집합은 동집합이고 명제로 표현하면 동치입니다. 뒤에서 예시로 든 문장과는 전혀 다른 이야기에요.
cheaterzz
20/05/24 17:36
수정 아이콘
답변 감사합니다.
답변 내용이 의미하시는것은 `조건과 조건` 이 동시에 참일때, 조건과 조건은 동치이다라고 말씀 하시는것 같습니다.
P : x-2 Q : x=2 라고 할때 P <-> Q 만족하므로 P와 Q는 동치다 라고 말씀하시는데 이것에 대한 설명은 저도 알겠습니다.

제가 궁금한것은 명제와 명제를 비교할때 질문입니다~
실바너
20/05/24 17:33
수정 아이콘
비전공자이지만 댓글달자면, 아래 두 명제는 동치가 맞습니다.
원래 명제들의 동치 관계를 생각할 때에는 조건명제들을 가지고 이야기하는데, 두 조건명제가 참이 되는 집합이 같을 경우에 이 둘을 동치라 합니다.
따라서, "원래부터 참인 명제", 즉 참이 되는 집합이 전체집합(universe)인 조건명제들은 전부 동치가 됩니다.
같은 개념으로, 항상 거짓인 명제들도 참이 되는 집합이 공집합으로 같으므로 전부 동치입니다.
닉네임을바꾸다
20/05/24 17:41
수정 아이콘
전체집합이라....현대 집합론에선 존재할 수 없다던가...응?
Wild Surge
20/05/24 19:15
수정 아이콘
우선 0이 있기 떄문에 예시의 Q는 거짓인 명제입니다.

그리고 동치라는 것은 P를 가정했을 때 Q가 참이고, Q를 가정했을 때 P가 참이어야 합니다.

좀 더 풀어서 설명하자면 P가 참이라고 가정했을 때 P에서 논리적 연역과정을 거쳐서 Q라는 결론을 도출할 수 있어야합니다.(Q에서 P도 마찬가지)

그런데 들어주신 예들은 그런 것들이 아니기 때문에 동치가 아닙니다.
cheaterzz
20/05/24 20:59
수정 아이콘
q를 다시 0이상이다라고 수정하겠습니다
그렇다면 동치란것은 명제논리에서 정확히 무엇을 정의하나요
Wild Surge
20/05/24 21:58
수정 아이콘
제가 혼동해서 잘못 말씀 드렸네요. P와 Q가 둘다 항진명제라면 당연히 동치인게 맞습니다. P->Q, Q->P가 모두 참이어야 할 때는 P,Q가 참이나 거짓 모두 될 가능성이 있을 때 뿐입니다.
20/05/24 20:10
수정 아이콘
(수정됨) 예를 들면 '나는 사람이다' 가 명제 P입니다. 그렇다면 `나는 사람이다` 가 P=나 이고 Q=사람 이어서 P이면 Q이다가 참이.아닙니다. 이걸혼동하시는 것 같습니다.
말씀하시는 예시는 P:1+1=2인데 P→Q가 참이 아닙니다. 당연히 Q→P도 참이아니죠..그게 사실 문제가 아니라 애초에P→Q라는명제가 성립이 안되요. 말로 풀어봐도 1더하기1이 2일때,각각의 실수의 제곱은 양수이다. 이게 무슨말이죠 일단문장자체가 의미가 완성이 안됩니다.
cheaterzz
20/05/24 20:59
수정 아이콘
실질조건문에서는 문장의 말이 성립이 안되더라도 진리치에 의해서만 판단가능한것으로 압니다.
주어진 예시에서 p이면 q이다는 일상언어로서는 말이 안되지만 명제논리에선 p가 참이고 q가 참이므로 p이면 q는 당연히 참인 문장입니다 q이면 p에서도 마찬가지구요
혹시 제가 잘못알고있는게 있을까요??
답변 감사합니다
20/05/24 21:05
수정 아이콘
네. 그말이 맞네요. 문장은.됩니다. 하지만.P→Q가 참이 아닙니다
cheaterzz
20/05/24 22:01
수정 아이콘
q를 제가 잘못써서 그런가요 q를 모든실수의제곱은 양수다가아닌 모든 실수의 제곱은 0이상이다라고 정정하겠습니다 그래도 p->q 는 참이 아닌가요???
20/05/24 23:32
수정 아이콘
이게 원래 집합에서 시작된 거라 그래요. 사실 정확하게 말하려면 이거입니다.P의 원소x는1+1=2인 수 체계에 속하는 수이다.
Q의 원소y는 모든 실수의 제곱이 양수인 수 체계에 속하는 수이다.
P는 자연수가 될 수도 있고 실수가 될 수도 있고 복소수가 될 수도 있지요.Q는 실수가 될 수도 있고 복소수가 될 수도 있지요. 만약에 P가 자연수이고 Q가 실수이면 "P이면Q이다" 즉 "자연수면 실수이다" 가 참이지만 P가 복소수이고 Q가 실수이면 P이면 Q이다 즉 복소수이면 실수이다가 거짓이 됩니다.
이렇게 거짓인 경우가 하나라도 있으면 P이면 Q이다는 결론적으로 거짓이 됩니다.
목록 삭게로! 맨위로
번호 제목 이름 날짜 조회
145231 [질문] 캘린더 앱 마다 다른 구글 계정을 연동시키는 방법이 없을까요 [2] 모콰3379 20/05/25 3379
145229 [질문] 강남에서 용산 교통편 질문 [9] 유마5451 20/05/25 5451
145228 [질문] 월급 200... k5 사도 될까요? [103] Foxwhite13117 20/05/25 13117
145227 [질문] 60만원대 사무용 노트북 추천 부탁드립니다. [2] Cmoon4620 20/05/25 4620
145226 [삭제예정] 다니 [3] 삭제됨6075 20/05/25 6075
145225 [질문] 얼마전 버스 라디오에서 들은 음악을 찾는데요 [8] RFB_KSG4258 20/05/24 4258
145224 [질문] 프로그래밍 독학 [8] kot5377 20/05/24 5377
145223 [질문] 선상낚시 광어우럭 낚시대 추천 부탁드립니다. [2] AV KAKARUS no.423933 20/05/24 3933
145222 [질문] 21대 총선 관련해 질문드립니다. [2] 박수갈채4149 20/05/24 4149
145221 [질문] 분양받은 오피스텔 조망권이 계약당시와 다릅니다. [5] 삭제됨5077 20/05/24 5077
145220 [질문] 테슬라 어떻게 생각하시나요 (주식 말고 차) [27] 참새가어흥6268 20/05/24 6268
145219 [질문] [명일방주] 육성 순서 질문 드립니다 [5] 초코아리5639 20/05/24 5639
145218 [질문] 런닝용 스마트워치 추천 부탁드립니다. [5] 기억의습작6216 20/05/24 6216
145217 [질문] 전세 계약 만료 이전 타지역 발령 관련 질문드립니다. [15] 냉면4381 20/05/24 4381
145216 [질문] 컴퓨터 견적 질문! [14] 카르5493 20/05/24 5493
145215 [질문] 피로연 관련 질문입니다. [7] 미숙한 S씨6647 20/05/24 6647
145214 [질문] [논리학] 전공자분들 논리학 관련 질문입니다. [12] cheaterzz4406 20/05/24 4406
145213 [질문] 가벼운 러닝이 힙업에 도움이 되나요? [8] 지금이대로8943 20/05/24 8943
145212 [질문] 역사 관련 방송이나 범죄사건 방송 추천 부탁드립니다. [4] 레너블3789 20/05/24 3789
145211 [질문] 반전세에서 전세 이사관련 이사날짜 궁금증 [2] 워라밸4164 20/05/24 4164
145210 [삭제예정] 제주도 신혼여행 질문드립니다. [15] 홈커밍7718 20/05/24 7718
145209 [질문] 재즈피아노 앨범 추천부탁드립니다. [4] 블루레인코트3535 20/05/24 3535
145208 [질문] 이 음악의 제목이 궁금합니다. [4] 하나4792 20/05/24 4792
목록 이전 다음
댓글

+ : 최근 1시간내에 달린 댓글
+ : 최근 2시간내에 달린 댓글
맨 위로